Efficiency improvement in proton dose calculations with an equivalent restricted stopping power formalism

Daniel Maneval ^{1,2} Hugo Bouchard ³ Benoît Ozell ⁴ Philippe Després ^{1,2} October 16, 2017

¹Université Laval, Département de physique, de génie physique et d'optique, Québec, Canada

 $^2 \rm Universit\acute{e}$ Laval, Département de radiooncologie et centre de recherche du CHU de Québec, Québec, Canada

³Université de Montréal, Département de physique, Montréal, Canada

⁴École polytechnique de Montréal, Département de génie informatique et génie logiciel, Montréal, Canada

The proton energy loss along a step length

Electromagnetic inelastic interactions with atomic electrons

• Split in **soft** and **hard** collisions.

	Soft collisions	Hard collisions
Ionization ranges	short (sub-cutoff)	significant
Transport	Deterministic	Monte Carlo
Physical quantities	Stopping power	Production cross section
Simulation scheme	Condensed	Analog

The proton Continuous Slowing Down Approximation (CSDA)

- An approximate variance reduction technique to compute the **mean** proton energy loss (ΔE)
- The true energy loss (ΔE_{true}) is obtained with the energy straggling (δ_{ΔE}):

$$\Delta E_{true} = \Delta E \pm \delta_{\Delta E}$$

Two schemes

EGSnrc for electrons/positons (Kawrakow, 2000; Kawrakow et al., 2016) and **Geant4** for all charged particles (Collaboration, 2015).

A new one proposed

named the equivalent restricted stopping power formalism: the L_{eq} formalism

The ΔE calculations

The L_{eq} formalism

 \boldsymbol{L} is the restricted/unrestricted stopping power. \boldsymbol{E} is the proton kinetic energy

The distance (s) space

The energy (ΔE) space

$$\frac{ds}{d\Delta E} = L^{-1}(E - \Delta E)$$

$$\Leftrightarrow s = -\int_{E}^{E - \Delta E} L^{-1}(E') dE'$$

The midpoint rule of the Newton-Cotes formula: $\Rightarrow \Delta E = s \cdot L_{eq} (E, \epsilon)$ $L_{eq} (E, x) = \frac{L(x)}{\left[1 + \frac{2L'(x)^2 - L(x)L''(x)}{L(x)^2} \frac{E^2 + x(x - 2E)}{6}\right]}$ $x = E \left(1 - \frac{\epsilon}{2}\right) \text{ and } \epsilon(s, E) = \frac{\Delta E}{E}$

 ϵ links the ΔE space with the s space.

Leq Look-up tables

$$L_{eq}(E, x) = \frac{L(x)}{\left[1 + \frac{2L'(x)^2 - L(x)L''(x)}{L(x)^2} \frac{E^2 + x(x - 2E)}{6}\right]} \text{ with } x = E\left(1 - \frac{\epsilon}{2}\right)$$

ϵ look-up tables

Geant4 setups

Simulation setups	(Geant4 CSDA	parameters	Time (h)	Errors (%)		
	d _{max}	Linear loss	Step function		Maximum	Falloff	
Reference	1μm	1%	(20%, 50 µm)	140	-	-	
High Accuracy (HA)	10 µm	1%	(20%, 50 µm)	14	0.2	0.9	
Balanced (Bal)	1 mm	0.1%	(0.1%, 1µm)	2.5	0.8	4.7	
Default	1 mm	1%	(20%, 50 µm)	0.8	4.8	16.5	

Graphic processor Unit (GPU)

- pGPUMCD: a new GPUMCD branch dedicated to proton MC transport
- GPUMCD: a validated GPU-based MC dose calculation code for photons and electrons (Hissoiny et al., 2011c)

Efficiency

L_{eq} formalism intrinsic efficiency:

- pGPUMCD-L: the Geant4 CSDA scheme
- pGPUMCD-L_{eq}

Materia	Ιρ	n_{e} (×10 ²³)	1	T _e ^{min}
	$\rm g.cm^{-3}$	$\rm cm^{-3}$	eV	MeV
Lung*	0.26	0.86189	69.69	0.148
Water	1.0	3.3428	78	0.352
$Bone^{**}$	1.85	5.9056	91.9	0.512
Copper	8.96	24.625	322	1.4
Gold	19.32	46.665	790	2.3

* ICRU inflated lung (ICRU, 1992)

** Bone, Compact (ICRU) (Berger et al., 2005)

L_{eq} formalism validation

The ranges (R_{80}) matched within 1 μ m

		Geant4 pGPUMCD-L			pGPUMCD-Leq	Intrinsic speed up factors				
Material	Energy	T_{G4}^{HA}	T_{G4}^{Bal}	T_{L}^{HA}	$T_{\rm L}^{\rm Bal}$	$T_{L_{eq}}$	GPU (T_{G4}/T_L)		L_{eq} (T _L /T _{Leq})	
	(MeV)	(ho	our)	(second)		(millisecond)	HA	Bal	HA	Bal
Lung	70	6.5	2	12.25	2.85	70	1,900	2,500	175	41
Water	100	3.5	1.9	4.73	2.12	46	2,600	3,200	103	46
Water	230	14	2.5	91	4.34	145	550	2,100	630	30
Bone	230	8	2.3	17.62	3.05	84	1,600	2,700	210	36
Copper	230	2.5	1.6	4.11	1.64	40	2100	3,500	103	41
Gold	230	1.7	1.4	3.23	1.30	31	1900	3,800	103	42

- Geant4/EGSnrc: linear algorithmic time complexity, *i.e.* O(n) where n represents the number of subdivision in a voxel to maintain the mean energy loss accuracy. n is fixed by d_{max}.
- the L_{eq} formalism: constant algorithmic time complexity, *i.e.* O(1)

L_{eq} formalism with the energy straggling

The ranges (R_{80}) matched within 100 μ m

Geant4:

1.4 to 20 hours per million transported protons

pGPUMCD:

31 to 173 milliseconds per million transported protons

The L_{eq} formalism led to an intrinsic efficiency gain factor ranging between 30-630, **increasing with the prescribed accuracy** of simulations.

It allows **larger steps** leading to a **constant algorithmic time complexity**. It significantly accelerates Monte Carlo proton transport while **preserving accuracy**.

The L_{eq} formalism constitutes **a promising variance reduction technique** for computing proton dose distributions in a clinical context.

The L_{eq} formalism could be used for other charged particles.

The multiple scattering was validated, not presented here.

Under investigations: nuclear interactions

More details concerning the L_{eq} formalism: (Maneval et al., 2017)

Acknowledgements

References

- Martin J. Berger, JS Coursey, M.A. Zucker, and J Chang. Estar, pstar, and astar: Computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.2.3). Technical report, National Institute of Standards and Technology, Gaithersburg MD, 2005. URL http://physics.nist.gov/Star.
- Geant4 Collaboration. Physics reference manual. *obtainable from the GEANT4 website: http://geant4. cern*, 2015.
- Sami Hissoiny, Benoît Ozell, Hugo Bouchard, and Philippe Després. Gpumcd: A new gpu-oriented monte carlo dose calculation platform. *Medical Physics*, 38(2):754–764, 2011c. URL http://link.aip.org/link/?MPH/38/754/1. arXiv:1101.1245v1.

- ICRU. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. ICRU Report. International Commission on Radiation Units and Measurements, Bethesda, Md., U.S.A, 1992. URL http://books.google.ca/books?id=E9UqAAAAMAAJ.
- Iwan Kawrakow. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. *Medical Physics*, 27(3):485–498, 2000. URL http://link.aip.org/link/?MPH/27/485/1.
- Iwan Kawrakow, David Rogers, F. Tessier, and B. Walters. The egsnrc code system: Monte carlo simulation of electron and photon transport (pirs-701). National Research Council (NRC), Report, 2016.

- Daniel Maneval, Hugo Bouchard, Benoît Ozell, and Philippe Després. Efficiency improvement in proton dose calculations with an equivalent restricted stopping power formalism. *Physics in Medicine and Biology*, 2017. URL
 - http://iopscience.iop.org/10.1088/1361-6560/aa9166.